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We investigate, by means of direct numerical simulations, the three-dimensional (3-D) 
dynamics of coherent vortices in a rotating channel. We focus here on the structure of the 
instantaneous (absolute and relative) vorticity field. Both transitional and turbulent regimes 
are considered. Strong rotation is shown to suppress the transition towards turbulence 
(leading to two-dimensional [2-D] flow). Conversely, moderate rotation yields strong longi- 
tudinal vortices on the anticyclonic side of the channel, which trigger early transition 
(earlier than without rotation). In that regime, the complete transition to fully developed 
turbulence is compared for two values of Rossby number: IRo(i)l=2 and IRo(i)1=6. In the 
early stage of the transition, perturbations are more strongly amplified at iRo(i)l=2. The 
saturation is, however, reached earlier in that case, and a more energetic turbulent state is 
achieved at IRo(i)l = 6. In the fully developed turbulent case, nonrotating and moderately 
rotating channels are compared. Relaminarization occurs on the cyclonic wall, whi le 
turbulence is observed on the anticyclonic wall. The vortex topology is shown to be strongly 
affected by the rotation. The enhancement of the anticyclonic perturbations level is 
associated with hairpin vortices which are much more inclined (up to 10 ° to the wall) than 
in the nonrotating case (45°). These extend until the channel center and are associated 
with a characteristic region of zero absolute mean vorticity. Stretching mechanisms of 
absolute vortex lines are carefully examined. 

Introduction 

We investigate, via three-dimensional (3-D) direct numerical 
simulations (DNSs), the influence of spanwise rotation on transi- 
tional and turbulent channel flow (Figure 1). 

Because of their engineering applications for turbomachinery, 
several laboratory experiments have focused on rotating bounded 
flows, such as boundary layers over fiat surfaces and flow in a 
straight channel. Several basic features of the boundary layers 
over rotating solid surfaces have been determined. Let B = 
(~(y), 0, 0) be the mean velocity (x is in the streamwise direction 
and y in the direction perpendicular to the wall). The rotation 
vector l~ = (0,0, ~ )  is oriented along the spanwise direction z 
and may be positive or negative. For the channel flow, the 
vorticity vector associated with the mean velocity profile ~ = 
(0,0,-ara/dy) is parallel to l~ near one wall and antiparallel 
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near the opposite wall; we refer to flow near these two particular 
walls as cyclonic and anticyclonic, respectively. Various other 
terms are used. The names suction and pressure sides originate 
from the pressure gradient due to the Coriolis force, and the 
terms trailing and leading sides are borrowed from the turboma- 
chinery literature. 

The parameter characterizing the rotation strength is the 
local Rossby number defined as 

d'~ /2D. 
= - ; /  (1) 

The laboratory experiments have shown that the cyclonic side 
is stabilized; as compared to the nonrotating case, the turbulence 
energy production decreases with increasing rotation rate, and 
fast rotation can lead to the total suppression of turbulent 
transition. Conversely, the anticyclonic side is destabilized for 
moderate rotation rates (high enough Rossby numbers). Numeri- 
cal simulations of rotating channel flows (Kim 1983; Tafti and 
Vanka 1991; Kristoffersen and Andersson 1993; Piomelli and Liu 
1995) have complemented the experimental investigations. No 
experimental or numerical data seem to be available for high-ro- 
tation rates. 
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Z 

Figure 1 Schematic of the spanwise rotating channel f low 
problem 

Figure 3 Isosurfaces of the longitudinal vorticity (~x = _+0.75 
at Ia# i ) l=  6, Re = 8000, t = 28 

For free-shear flows, the drastically different effects of solid- 
body rotation, depending on whether the sense of rotation is 
cyclonic or anticyclonic, have been investigated in several labora- 
tory and numerical experiments. Numerical investigation of pla- 
nar mixing layers and wakes submitted to solid-body rotation of 
axis parallel to the basic vorticity have been performed by 
Lesieur et al. (1991) and M6tais et al. (1995). They have shown 
that, for small Rossby numbers, the rotation renders the flow 
more two-dimensional (2-D) both in the cyclonic and anticyclonic 
cases. At moderate anticyclonic rotation rates, a critical value of 
the Rossby number was found for which the flow is strongly 
destabilized. The flow three-dimensionalization, in that case, is 
due to an intense stretching of the absolute vortex lines yielding 
intense longitudinal absolute hairpin vortices. Furthermore, it 
was checked that maximum stretching takes place in regions 
where the local Rossby number is close to unity, in agreement 
with the phenomenological theory proposed by Lesieur et al. Our 
purpose here is to investigate if similar observations can be made 
in the rotating channel flow. 

Figure 4 Absolute vortex f i laments at IRo(i)l=6, Re=8000,  
t = 2 8  

Figure 2 Isosurface of the vorticity modulus ~ = 1 . 5  at 
IRo(i)l=% Re=8000,  t = 3 4 3 0  (only the lower half of the 
channel is presented) 

X 
Figure 5 Isosurface of the spanwise vorticity ~oz= -1 .5 -  
spanwise vorticity map for z = O  at IRo(i)l=O.1, Re=8000,  
t > 4000 
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Figure 6 Temporal  evolut ion of the f luctuat ing energy: - -  
IRoUll= 6; ' " ,  IRoUll= 2 (Re = 3750) 

N u m e r i c a l  a s p e c t s  

In a reference frame rotating at a constant angular velocity 12, 
the incompressible Navier-Stokes equations can be written as: 

au 1 
i + ( t o +  21~) X u =  - - - V ~ + v V 2 u  
at p 

(2) 

V. u = 0 (3) 

U = ( U ,  U,  W ) ,  (O = ( t o x '  tOy ,  f e z )  a n d  f l  = (0, 0, f~) are, respectively, 
the relative velocity, relative vorticity, and rotation vectors. 7r is 
the modified pressure, including the (conservative) centrifugal 
force, to o = to + 2,0, will designate the absolute vorticity. 

A detailed analysis of the 3-D flow structures requires high- 
order numerical schemes. We have then developed a numerical 
code solving the incompressible 3-D Navier-Stokes equations 
combining pseudospectral methods in the periodicity directions 
(streamwise and spanwise directions) and high-order finite differ- 
ence schemes in the direction normal to the wall. Sixth-order 
compact differences schemes are used (see Lele 1992) with a 
stretched mesh. Velocity and pressure are discretized on the 
same grid. Note that the spurious oscillations in ~r, which are 
characteristic of the nonstaggered grids, are minimized due to 
the accuracy of the compact schemes (see Shih et al. 1989). For 
time discretization, a Crank-Nicholson scheme is used for the 
viscous term and a third-order Runge-Kutta  scheme for the 
remaining. A fractional step method is adopted to ensure incom- 
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Figure 7 Temporal  evolut ion of the hal f -channel  w id th  nor- 
mal ized w i th  cyclonic or ant icyclonic f r ic t ion veloci ty and the 
viscosity v, respect ively h + and h +. - - ,  IRoU~l=6; ..., 
IRo(i)I=2; lower  curves, h+;  upper curves; h + (Re=3750 )  

pressibility. In the resolution of the Poisson equation, the com- 
putations of the various operators is such that the velocity field 
satisfies the divergence-free condition up to machine accuracy in 
the whole calculation domain. 

Both for the transitional and turbulent channel flows, excel- 
lent comparisons have been obtained with the results of Zang 
and Krist (1989) and Kim et al. (1987) based on spectral methods. 
Comparable resolution is here used confirming the "spectral-like 
accuracy" of the compact schemes. 

T r a n s i t i o n a l  f l o w  

Early transition 

The initial conditions correspond to a basic Poiseuille velocity 
profile to which is superimposed a small-amplitude random per- 
turbation (three-dimensional white noise) of intensity = 10-4U~, 
where U c is the centerline velocity of the parabolic profile. The 
present computations have been performed with a constant mass 
flux. The Reynolds number Re is here chosen equal to 8000, 
(where Re is based on U c and half-channel height h) so that the 
parabolic profile is unstable to small perturbations in the nonro- 
tating case. Notice that, in the previous studies by Alfredsson and 
Persson (1989), Finlay (1990, 1992), Yang and Kim (1991), the 
Reynolds numbers was insufficient to have subcritical or super- 
critical transition without rotation. Throughout this paper, we 

Figure 8 
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Figure 9 Isosurface of the vort ic i ty modu lus  t o = 3  at 
IRoUll= =, R e =  3750 

use the normalization U C = 1 and h = 1. Let IRoU)l be the Rossby 
number associated with the vorticity maxima of the initial basic 
velocity profile. We compare three direct numerical simulations 
of transition at different Rossby numbers: IRoU)l = 0.1,2,6,oo 
where IRoU)l = ~ denotes the case without notation. The size of 
the computational domain is (Lx, Ly,Lz)=(4"rr,2,4'rr). The 
streamwise length is equal to twice the most amplified 2-D 
wavelength predicted by the linear stability analysis (Tollmien- 
Schlichting mode). The spanwise length is large enough to allow 
for several A-shaped vortices to appear (Figure 2). 

Simulations are started on a coarse grid (14 x 97 x 26) which 
is progressively refined in the periodicity directions. The final 
grid is (192 x 97 x 26) for IRoU)l = 0.1, (90 x 97 x 240) for IRoU)l 
= 6 and 2, (64 × 97 × 192) for [RoU)l = zo. 

lRo{ i ) l=~ .  Previous results are covered here (Zang and Krist 
1989). The initial stage is dominated by the growth of 2-D 
Tollmien-Schlichting waves. They become unstable to 3-D per- 
turbations when their amplitude exceeds a critical threshold. 
A-shaped vortices then form with a characteristic vortical pattern 
shown in Figure 2. Only aligned vortices are present, because, in 
the absence of external forcing, they constitute the most proba- 
ble pattern (Kim and Moser 1989). 

M o d e r a t e  r o t a t i o n :  I R o U l l = 6  a n d  IRo( ; ) l=2 .  As compared 
with the nonrotating case, the transition occurs earlier on the 
anticyclonic side of the channel. At these Rossby numbers, the 
most amplified mode is a purely longitudinal mode without 
streamwise dependence (k x = 0). However, as noted by Yang and 
Kim (1991), 3-D waves with small k x exhibit comparable growth 

Figure 10 Isosurface of the relat ive vort ic i ty  modu lus  t o = 3  
at IRoU)l= 6, Re = 3750 

Figure 11 Isosurface of the relat ive vort ic i ty modu lus  
(0=2  at IRo(i) l=2, R e = 3 7 5 0  

rates. Similar results were found for rotating free-shear flows by 
M6tais et al. (1995). Isosurfaces of longitudinal vorticity show 
counterrotating vortices oriented along the streamwise direction. 
These emerge in the early nonlinear stage (at t = 28 for ]Ro(i)r = 
6, see Figure 3). For ]Ro(i)l = 2, the initial perturbation growth is 
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Figure 12 Distr ibut ion of the inc l inat ion of the project ion of 
the vort ic i ty vectors in (x,y)-planes; data we igh ted  w i th  the 
magni tude of the projected vort icity; y =  - 0 . 5 ,  upper f igure: 
Iao( / ) l=~ middle f igure: IRoU)l=6 lower  f igure: IRoU)l=2 
(Re= 3750) 
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higher, and these longitudinal vortices are formed earlier. This is 
in agreement with the predictions performed by Yanase et al. 
(1993) on the basis of a simplified form of the generalized 
Orr-Sommerfeld  equations: in the limit of Re ~ % for purely 
longitudinal perturbations, and in a constant shear, maximum 
growth rate was found at IRofi)l = 2. This result may also be 
recovered by considering an exact solution of Euler's equations 
in terms of sheets of fluid moving independently (M6tais et al. 
1992). 

The examination of the absolute vortex filaments (Figure 4) 
shows clearly that, during this stage, these are stretched in a 
hairpin manner and inclined approximately at 45 ° to the wall. 

F a s t  r o t a t i o n :  I R o ( 1 ) l = 0 . 1 .  Because spanwise rotation has no 
effect on 2-D motions (without z dependence), the growth of the 
Tollmien-Schlichting waves (of streamwise wavelength X x = 2-rr) 
is unaffected. Ho'~,ever, as opposed to the previous cases, the 
growth of the 3-D perturbations is totally inhibited. Conse- 
quently, the Tollmien-Schlichting waves remain stable and are 

able to reach a nonlinear saturated state. The flow is then 
composed of purely 2-D spanwise vortices of alternate sign 
vorticity on the different side of the channel (see Figure 5). 

At small Rossby number, the flow exhibits several features in 
common with the 2-D channel simulations of Jim6nez (1990). For 
instance, phenomena such as wall sweeps and ejections resulting 
from a chaotic behavior of the flow are present. 

The full t r a n s i t i o n  

Due to computer cost, the computation at Re = 8000 has to be 
stopped in the early stage of transition. Looser resolution can be 
used at lower Reynolds number and the full transition of 
the rotating channel can then be simulated. We here choose 
Re = 3750 and a smaller computational domain: (L  x, Ly, L z) = 
(2ar,2, Tt). The initial grid (14 × 129 × 48 resolution points) al- 
lows for the emergence of various modes. The final grid is 
144 × 129 × 144. The initial conditions are otherwise analogous 
to the previous section: two rotation rates are here considered 

Figure  13 
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IRoU)r = 6 and IRoU)l = 2. Details related to the nonrotating case 
can be found in Gilbert and Kleiser (1990), Sandham and Kleiser 
(1992), and Zang and Krist (1989). 

Figure 6 shows the time evolution of the fluctuating kinetic 
energy. It corresponds to the sum of the kinetic energy fluctua- 
tions in all spectral modes except the mean component. An 
integration is then performed over the whole y extend of the 
channel, and the result is normalized by the kinetic energy of the 
mean flow. After a short initial adjustment stage, the perturba- 
tion grows exponentially. As observed at higher Reynolds num- 
ber (see preceding section), the growth is stronger for IRo(i)l = 2 
than for IRo(i)l = 6. 

By the time the perturbation has reached a finite amplitude, 
the nonlinear effects prevail. In this second stage, streamwise 
vortices form with a preferential spanwise spacing and then 
merge (see Alfredsson and Persson 1989; Yang and Kim 1991; 
Guo and Finlay 1991). Although the initial linear growth is 
stronger for IRo(°l = 2 than for [ R o ( i ) I  = 6, the subsequent satu- 
ration level reached in the former case is lower than in the latter 
case. 

Effects of spanwise rotation in channel flow." E. Larnballais et al. 

The Reynolds number based upon the friction velocity is a 
good indicator of transition: it is given by the half width of the 
channel normalized by the friction velocity and is noted h +. 
Figure 7 represents hc + and ha +, respectively, estimated near the 
cyclonic and the anticyclonic walls. This clearly shows the strong 
asymmetry of the flow behavior near the two different walls: a 
rapid departure of h~ + from the laminar value is observed for 
t > 15 (IRo")l = 2) and for t > 20 (IRo(°l = 6). Conversely, hc + 
undergoes a slow raise before reaching a weak asymptotic value. 
This indicates a weak turbulence near the cyclonic wall, which 
could be a consequence of the strong turbulent events originated 
from the anticyclonic region. 

Turbulent f low 

We now compare the nonrotating and rotating turbulent flow in 
a channel at Re = 3750. The computational grid is 144 × 129 × 
144 for IRo(i*l = oo and IRoU)l = 6 and 120 x 129 x 96 for IRoU)I = 
2. The domain size is (2~,2, ~r) in the three cases. Dealiasing is 
applied in the two-spectral directions. The initial conditions 
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consist in a field issued from a nonrotating calculation on which 
we impose a spanwise rotation. We then integrate until the flow 
reaches a statistically steady state. Let us note that this proce- 
dure provides a turbulent stage which is statistically identical 
with the final stage of the full transition described in the preced- 
ing section. For the two rotation regimes here considered, the 
turbulence intensity is higher on the anticyclonic side than on the 
cyclonic side where relaminarization occurs. We have checked 
that the statistical results such as those shown in Figure 8 agree 
well with the simulations performed by Kristoffersen and Ander- 
sson (1993). 

We have used a higher resolution than Kristoffersen and 
Andersson (1993) in order to be able to precisely investigate the 
coherent structures embedded within the flow. Particularly, we 
examine how the instantaneous vorticity field differs from the 
nonrotating case. Comparison of the isosurface of the relative 
vorticity modulus to = 3  or 2 (Figures 9-11) clearly shows a 
change of vortex topology when rotation is applied. Near the 
cyclonic wall, the isovorticity surfaces are nearly flat, indicating a 
weak growth of the perturbation. On the anticyclonic side, the 
modification of the turbulence level is associated with the longi- 
tudinal vorticity intensification. 

Next we examine the distribution of the angle 0 = 
t an- ] ( toJ tox) .  It represents the inclination angle of the projec- 
tion on the (x, y)-plane of the (absolute or relative) vorticity 
vector with respect to the wall. We here follow the procedure 
developed by Moin and Kim (1985). Each contribution to the 
distribution is weighted by the magnitude of the vorticity projec- 
tion. We here consider a flow region far from the wall corre- 
sponding to y = -0 .5 .  At this location, the distribution differs 
appreciably in the nonrotating and rotating cases (Figure 12): in 
the nonrotating case, the histogram for 0 presents a peak around 
45 °, in agreement with Moin and Kim. For IRo(i)l = 6, the anticy- 
clonic region is mainly composed of vortex lines inclined at 
= 25 °, while for [Ro(i)l = 2, the most probable angle is around 
10 °. The sharper peak is observed in the latter case, indicating a 
very pronounced flow organization. Superposed on these struc- 
tures, we also observe for [Ro(i)l = 6 large-scale longitudinal rolls 
(Taylor-G6rtler-like vortices) as in the laboratory experiments of 
Johnston et al. (1972) and the direct numerical simulations of 
Kristoffersen and Andersson (1993). For [Ro(i)[ = 2, these large- 
scale rolls do not seem to be present. 

The mean velocity profile exhibits a characteristic linear 
region of slope 2~q (see Figures 14a, 15a). It is associated with a 
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local Rossby number  Ro(y)  = - 1 (see Equat ion 1). As suggested 
by the phenomenological  theory of Lesieur et al. (1991), in such 
a range of near-zero absolute spanwise vorticity, the production 
of longitudinal vorticity should be favored. Figures 13b, 14b, and 
15b compare the rms of the fluctuating vorticity components  at 
IRo(i)l = ~, IRo(i)l = 6, and IRo(i)[ = 2. In the rotating case, the 
longitudinal component  reaches a plateau within the Ro(y)  = - 1 
region and largely exceeds the other  two components.  This seems 
to confirm the predictions of Lesieur et al. (1991). 

However, regions of local Rossby number  of - 1 can also be 
viewed as neutral  stability regions (Ferziger et al. 1976; Trit ton 
1992). In the latter, one could be inclined to think that the 
turbulence activity principally results from the convection by the 
large-scale vortices of the highly turbulent  fluid originally situ- 
ated near the anticyclonic wall. To answer this question, we have 
examined the various terms of the transport  equations for the 
mean square of the fluctuating vorticity components.  These 
equations are given (Tennekes and Lumley 1972) by 

D ( . ~ )  Ti/+S/i+l 'J,~ - -  = 

Dt 
(4) 

L = - ½( )j 

(5) 

Ti i  , S i i  , and Vii respectively represent the sum of the stretch- 
ing terms, transport  terms (production + turbulent  transport), 
and viscous terms (diffusion + dissipation). The indices (1, 2, 3) 
are used to denote the ( x , y , z )  directions. (~i,u'i) and (N,,,to' i) 
are, respectively, the mean value and the fluctuation of velocity 
and absolute vorticity. An overbar indicates an average over x, z, 
and t. We have checked that, in the nonrotat ing case, each 
( 1 / 2 ) ~  budget is in good agreement with those of Antonia  

and Kim (1994), We present here the budget of (1/2)to '2=  
(1/2)(~-~1~1 + ~ + ~ for IRo(i)l = %6,2 ,  and our analysis 
concerns only the region far from the wall. The study of the 
rotation effects on the near-wall regions will be the subject of a 
future work. The stretching term exhibits a plateau in the region 
of zero spanwise absolute vorticity corresponding to y < 0, and 
clearly prevails over the transport  term (see Figures 14c, 15c). 
This shows that an intense stretching of absolute vorticity takes 
place in agreement with the phenomenological arguments pro- 
posed by Lesieur et al. (1991). The stretching term decreases for 
y > 0 and becomes very small near  the cyclonic wall confirming 
the inhibition of vortex stretching in this region. 

Conclusion 

We have presented 3-D direct numerical simulations of the 
transitional and turbulent  rotating channel  flow using highly 
accurate numerical schemes. This has allowed us to perform a 
detailed investigation of the vortices embedded within the flow. 
In the transitional case and for rapid rotation, the growth of the 
three-dimensionality is totally inhibited and the flow eventually 
consists in large-scale: 2-D vortices parallel to the rotation axis. 
These result from the growth and saturation of the energy of the 
Tollmien-Schlichting waves. Conversely, a rapid transition to- 
ward fully developed 3-D turbulence is observed on the anticy- 
clonic side of the channel  when moderate  rotation is applied. 
This is attributable to the rapid amplification of modes of zero or 
near-zero longitudinal component.  At  moderate  rotation (IRo(i)l 
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= 6 and IRo(°l = 2), we observe, in the turbulent regime, the 
development, over a large portion of the channel width, of a 
well-defined region in which the mean absolute vorticity is close 
to zero. In this region, the flow is composed of hairpin vortices of 
weak inclination with respect to the wall (up to 10 ° for IRo(i)l = 2). 
Furthermore,  the analysis of the different terms involved in the 
equations for the mean square (absolute) vorticity fluctuations 
shows that the stretching mechanisms play a major role. These 
are much more important  than the transport processes. 
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